Computational Analysis of a Packed Column for SO₃ Decomposition in Sulfur-Iodine Process

Research Background and Purpose

- The thermochemical and hybrid hydrogen production processes accompanied with the high temperature and strongly corrosive operating conditions basically have material problems.
- The development of a structural material and equipment design technologies is being carried out.

How to be free and easy from the material issue ?

In order to resolve these problems, the concept of a directly heated SO₃ decomposer for the SI and HyS processes has been introduced and analyzed by using a computational fluid dynamics code(CFD).

KAERI - NHDD Project

Nuclear Hydrogen Production System

Sulfur-Iodine Cycle

Preliminary Thermal Pathway for SI Cycle

Concept of a Directly Heated SO₃ Decomposer

- •In order to mitigate material problems and complex heatexchanger configurations, the following conceptions are adopted.
- -A direct mixing of process and He gases to maintain an operation temperature.
 -Insertion of molten salt layer to monitor the integrity of IHX.
- -A gas separator to recycle He From VHTR and process gases.

Design values for Chemical Decomposer(1/2)

Schematic of sulfur-iodine decomposer

Design values of thermo-chemical decomposer

	Values
Total decomposer length	16.06m
Decomposer height	8m
Inlet diameter for mixture gases	30cm
He inlet diameter	50cm
Upper & lower Grid plate thicknesses	3cm
Al ₂ O ₃ catalyst diameter	2cm

□ RA330^[6] as the material of the vessel and guide tube

KAERI - NHDD Project

Г

Design values for Chemical Decomposer(2/2)

	H ₂ O	O ₂	SO ₂	SO ₃	H ₂ SO ₄
Mass Fraction	22.12%	22.12%	22.15%	33.38%	0.22%
Mole Fraction	1.7777	0.5	1	0.6031	0.0033

Mass fraction & mole fraction of mixture gases

Operating conditions of thermo-chemical decomposer

	Flow rate	Inlet temperature	Operating pressure
He	2.0628 kg/s	920 °C	7.09bar
Mixture gas	1.8046 kg/s	450 °C	7.09bar

Pressure drop as function of catalyst diameter and gas velocity

Ergun Model

$$\frac{dp}{L} = -\frac{150\mu(1-\varepsilon)^2}{\varepsilon^3 D_p^2} - \frac{1.75\rho(1-\varepsilon)u^2}{\varepsilon^3 D_p}$$

$$\mu = vis \cos ity[kg / ms]$$

$$\rho = density[kg / m^3]$$

 $\mu = vis \cos ity[kg / ms]$ $\rho = density[kg / m^{3}]$ $D_{p} = Al_{2}O_{3}diameter[m]$ $\varepsilon = porosity[-]$ $u = su \ erficial velocity[m / s]$

KAERI - NHDD Project

Velocity profile

Temperature contour

Temperature profile in the r-direction

Guide tube Temperature contour with different He Flow Rate

- The maximum temperature of RA 330 is 690 °C at He=1 kg/s. It is much lower than 800 °C which is considered as a limiting temperature. The mean temperature in the Al2O3 region is 783 °C which is a little low temperature to decompose a sulfur-iodine.
- The maximum temperature of guide tube is 780°C at He=3 kg/s, and The mean temperature in the Al2O3 region is 890°C which is good temperature to decompose a sulfur-iodine.

 \checkmark

Conclusions

- A numerical analysis for a directly heated SO3 decomposer has been made.
- When the conceptual design conditions of the decomposer presented in this research were used, the maximum temperature of the structural material (RA330) could be maintained at 800 °C or less.
- It can be seen that the mean temperature of the reaction region packed with catalysts in the SO3 decomposition reactor could satisfy the temperature condition of around 850 °C which is the target temperature in this study.
- An improved heat transfer model for a catalyst layer including a chemical reaction is required.

Thank you.

